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Results of Monte Carlo (MC) simulations for more than 200 nonnucleoside inhibitors of HIV-1
reverse transcriptase (NNRTIs) representing eight diverse chemotypes have been correlated
with their anti-HIV activities in an effort to establish simulation protocols and methods that
can be used in the development of more effective drugs. Each inhibitor was modeled in a complex
with the protein and by itself in water, and potentially useful descriptors of binding affinity
were collected during the MC simulations. A viable regression equation was obtained for each
data set using an extended linear response approach, which yielded r2 values between 0.54
and 0.85 and an average unsigned error of only 0.50 kcal/mol. The most common descriptors
confirm that a good geometrical match between the inhibitor and the protein is important and
that the net loss of hydrogen bonds with the inhibitor upon binding is unfavorable. Other
physically reasonable descriptors of binding are needed on a chemotype case-by-case basis. By
including descriptors in common from the individual fits, combination regressions that include
multiple data sets were also developed. This procedure led to a refined “master” regression for
210 NNRTIs with an r2 of 0.60 and a cross-validated q2 of 0.55. The computed activities show
an rms error of 0.86 kcal/mol in comparison with experiment and an average unsigned error
of 0.69 kcal/mol. Encouraging results were obtained for the predictions of 27 NNRTIs,
representing a new chemotype not included in the development of the regression model.
Predictions for this test set using the master regression yielded a q2 value of 0.51 and an average
unsigned error of 0.67 kcal/mol. Finally, additional regression analysis reveals that use of ligand-
only descriptors leads to models with much diminished predictive ability.

Background

Inhibitors of HIV-1 reverse transcriptase (HIVRT)
reduce the ability of the enzyme to perform RNA-
dependent DNA polymerase and RNaseH activities
required for the conversion of viral RNA to DNA.1-3

Because viral DNA copies are necessary for subsequent
replication steps, inhibition of HIVRT has evolved to
become an important part of anti-HIV therapies.1,4 Two
broad inhibitor classes toward HIVRT have been dis-
covered.3,4 The first, termed nucleoside reverse tran-
scriptase inhibitors (NRTIs), mimic normal active site
substrates of HIVRT but lack the 3′-OH group required
for DNA chain elongation, which causes premature
termination of the growing viral DNA strand (Figure
1).3,4 The second class, nonnucleoside reverse tran-
scriptase inhibitors (NNRTIs), binds to a hydrophobic
pocket on HIVRT ca. 10-15 Å from the NRTI site
(Figure 1).3 This binding event alters the conformation
of active site residues hampering normal enzymatic
activity.4,5

Clinical trials have determined that the most effective
way to suppress HIV replication is through a combina-
tion of NRTIs, NNRTIs, and HIV protease inhibitors
(HIVPR), a treatment regimen termed highly active
antiretroviral therapy (HAART). The success of HAART in delaying the onset of acquired immunodeficiency

syndrome (AIDS) is attributed in part to the suppressed
emergence of mutant virus strains selected for in the
presence of single inhibitors6 and by the fact that some
inhibitors have been shown to act synergistically toward
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Figure 1. Ribbon diagram showing HIVRT (gray) complexed
with DNA (blue) and the location of the NRTI (red) and NNRTI
(green) binding sites. Crystal structure coordinates (PDB entry
1rtd) are from refs 32 and 63.
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inhibition of HIV replication.7 Because mutations in
HIVRT affect various NNRTIs differently,4 the need for
diversity among structurally unique NNRTI cores and
within a given core is important. The present work is
an extension of our ongoing efforts toward the develop-
ment of protocols and methods to be used in the design
of improved anti-HIV drugs.8-12 Computer simulations
have been carried out for more than 200 compounds
based on the eight different NNRTI cores shown in
Scheme 1 and in Tables 1-8 for which anti-HIV activ-
ities have been reported in the literature. Viramune (ne-
virapine, core 3) and Sustiva (efavirenz, cores 5a,b) have
been approved by the FDA, while second generation
NNRTIs such as carboxanilide (core 2), quinoxaline (core
6), and phenethylthiazolethiourea (PETT, core 7) analog-
ues are in preclinical or early clinical development.13,14

The goal of this study is to develop a physically rea-
sonable computational model for the prediction of NN-
RTI activity by correlating results of atomic level com-
puter simulations including solvent with experimentally
determined anti-HIV activities. If the computational
model (scoring function) for each individual core can be
incorporated into one regression equation, a general sco-
ring function may emerge that could be used to predict
the anti-HIV activity for new NNRTIs. Elucidating the
physical reasons for the variations in binding affinities
through interpretation of the simulation results is an
additional benefit that can contribute to the develop-
ment of improved procedures for inhibitor design.

Scheme 1

Table 1. HEPT Analogues, Core 1

no. R1 R2 R3 activity ca. ∆Gexptl

H01 Me CH2OCH2CH2OH SPh 7.0a -7.32
H02 Me CH2OCH2CH2CH3 SPh 3.6a -7.73
H03 Me CH2OCH2CH3 SPh 0.33a -9.20
H04 Me CH2OCH3 SPh 2.1a -8.06
H05 Me CH2OCH2Ph SPh 0.088a -10.01
H06 i-Pr CH2OCH2Ph SPh 0.0027a -12.16
H07 Me Et SPh 2.2a -8.03
H09 Et CH2OCH2CH3 SPh 0.019a -10.96
H10 i-Pr CH2OCH2CH3 SPh 0.012a -11.24
H11 i-Pr CH2OCH2CH3 CH2Ph 0.004b -11.89
H12 c-Pr CH2OCH2CH3 SPh 0.1a -9.93
H13 Me CH2OCH2CH2OH CH2Ph 23.0c -6.52
H14 Me CH2OCH2CH2OH OPh 85.0c -5.78
H15 Me CH2OCH2CH2OH SPh-3,5 di-Me 0.26d -9.35
H16 Et CH2OCH2CH2OH SPh-3,5 di-Me 0.013d -11.19
H17 i-Pr CH2OCH2CH2OH SPh-3,5 di-Me 0.0027d -12.16
H18 Et CH2OCH2Ph SPh 0.0059a -11.68
H20 Me Bu SPh 1.2a -8.40
MKC-442 0.004b -11.89

a Ref 47. b Ref 48. c Ref 49. d Ref 50. H01 is parent HEPT, and
H11 is MKC-442. H17 was excluded as an outlier from the
individual regression (eq 5), from the build-up model (eqs 16-
20), and from the final regression model (eq 21). Activity (cell-
based assay) is in micromolar at 37 °C. Estimated experimental
binding energies ∆Gexptl ≈ RT ln(activity) are in kcal/mol. ∆Gexptl
range ) 6.38, N ) 18.
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Theoretical Methods

The most rigorous computational approaches used for
the calculation of binding affinities (∆Gb) are the free
energy perturbation (FEP) and thermodynamic integra-
tion (TI) methods.15-18 These methods typically employ
molecular dynamics (MD) or Monte Carlo (MC) simula-
tions and have yielded impressive results for a number

of protein-ligand systems, as reviewed elsewhere.15-18

A more approximate method for the estimation of ∆Gb
is based on linear response (LR) theory, as introduced
by Åqvist and co-workers (eq 1).19 This approach is
considerably faster than the FEP or TI alternatives
because no intermediate transformation process is
required to calculate the binding affinity.19

Here, 〈 〉 signifies an ensemble average of the differ-
ence of the inhibitor-solvent plus inhibitor-protein
interaction energies (∆E) in the bound state and of the
inhibitor-solvent interaction energies in the unbound
state.19 The two energy terms represent the differences
in average van der Waals (Lennard-Jones) and elec-
trostatic (Coulombic) contributions, respectively, which
are normally calculated using a molecular mechanics
force field and either MD or MC simulations. The
Coulombic energy differences were originally scaled by
a factor â ) 0.50, while the coefficient R was determined
by fitting the simulation results to known experimental
binding affinities.19

Jorgensen et al. modified the LR approach for the
calculations of free energies of solvation, which corre-
sponds to eq 2 for computing free energies of binding.20,21

In this approach, both coefficients R and â are allowed
to vary, and a third term representing the solvent
accessible surface area (SASA) of the solute is included
and scaled by a coefficient γ. The rationale for the SASA
term is that it provides a means to account for possible
positive free energies of hydration caused by the penalty

Table 2. Carboxanilide Analogues, Core 2

no. R1 X R2 activity
ca.

∆Gexptl

U02 2-OMe-Phe O COO-c-pentyl 1.2a -8.40
U03 OCH(CH3)2 S COO-i-Pr 0.029b -10.72
U04 3-(2-Me-Fur) S OCH2CHdC(CH3)2 0.009a -11.42
U05 2,3-dihydro(1,4)-

oxathiine
S COO-i-Pr 0.019b -10.96

U06 3-(2-Me-Fur) S COO-CH2CH(CH3)2 0.028a -10.72
U07 3-(2-Me-Fur) S COO-CH2-c-Pr 0.043a -10.45
U08 3-(2-Me-Fur) S OCH2CHdCHCH3

(trans)
0.018a -10.99

U09 3-(2-Me-Fur) S COO-CH2CF3 0.018a -10.99
U10 3-(2-Me-Fur) S COO-c-hexyl 0.011a -11.30
U11 2-F-Phe S COO-c-hexyl 0.102a -9.92
U12 3-(2-Me-Fur) S CHdN-OCH3 0.070a -10.15
U13 3-(2-Me-Fur) O CH2OC(CH3)3 2.2a -8.03
U14 3-(2-Me-Fur) S COO-c-pentyl 0.013a -11.19
U18 3-(2-Me-Fur) S CH2OC(CH3)3 0.087a -10.02
U19 3-(2-Me-Fur) S CHdN-OC(CH3)3 0.142a -9.72
U20 3-(2-Me-Fur) S OCH2C(CH3)3 0.45a -9.01
U22 Phe S CHdN-OC(CH3)3 0.086a -10.03
U23 3-(2-Me-Fur) S COO-CH-(i-Pr)2 0.076a -10.10
U24 OCH(CH3)2 S CHdN-OCH(CH3)2 0.032b -10.64
U25 2-(3-Me-Thie) S OCH2CHdCH2 0.108a -9.89
U26 3-(2-Me-Fur) S CHdN-OCH2-

CHdCH2

0.021a -10.90

U27 2-(3-Me-Thie) S CHdN-OCH(CH3)2 0.022a -10.87
U28 3-(2-Me-Fur) S COO-CH(CH3)(c-Pr) 0.025a -10.81
U29 OCH(CH3)2 S COO-CH-(i-Pr)2 0.188b -9.54
U30 3-Thie S COO-c-hexyl 0.078a -10.09
U31 3-(2-Me-Fur) S OCH2COOC(CH3)3 0.757a -8.69
U32 2-(3-Me-Thie) S COO-CH-(i-Pr)2 0.110a -9.88
U33 OCH(CH3)2 S OCH2C(CH3)dCH2 0.3b -9.26
U34 3-(2-Me-Fur) S CHdN-O-c-pentyl 0.063a -10.22
U35 2-OMe-Phe S COO-i-Pr 0.513a -8.93
U36 2-(3-Me-Thie) S CHdN-OC(CH3)3 0.027a -10.74
U37 3-(2-Me-Fur) S OCH2CH2CH(CH3)2 0.021a -10.90
U38 3-(2-Me-Fur) S COO-i-Pr 0.021a -10.90
U39 3-(2-Me-Fur) O COO-i-Pr 1.4a -8.31
U40 2-(3-Me-Thie) O CHdN-OC(CH3)3 0.644a -8.79
U41 2-Cl-Phe S COO-c-hexyl 1.2a -8.40
U43 3-(2-Me-Fur) S SCH2COOC(CH3)3 0.55a -8.88
U44 OCH(CH3)2 O COO-i-Pr 1.8b -8.14
U45 OCH(CH3)2 S OCH2CHdCHCH3

(trans)
0.133b -9.76

U47 OCH(CH3)2 S COO-Et 0.099b -9.94
U48 Phe S COO-i-Pr 0.15a -9.68
U49 Phe O COO-i-Pr 1.3a -8.35
U50 2-F-Phe O COO-c-hexyl 1.6a -8.23
U51 OCH(CH3)2 S COOCH2-i-Pr 0.03b -10.67
U52 OCH(CH3)2 S COOCH2-c-Pr 0.1b -9.81
U53 OCH(CH3)2 S COO-c-pentyl 0.06b -10.26
MKC-442 0.01a -11.35
nevirapine 0.03b -10.76
9-Cl TIBO 0.05b -10.37

a Ref 51. b Ref 52. U03 is UC-38 (PDB entry 1rt6), U04 is UC-
781 (PDB entry 1rt4), and U19 is UC-10 (PDB entry 1rt5). PDB
entries are from ref 32. U10, U26, U38, U41, and U50 are excluded
as outliers from the individual regression (eq 6) and from the build-
up model (eqs 17-20). U02, U41, U44, and U50 are excluded as
outliers from the final regression model (eq 21). Activity (cell-based
assay) is in micromolar at 37 °C. Estimated experimental binding
energies ∆Gexptl ≈ RT ln(activity) are in kcal/mol. ∆Gexptl range )
3.39, N ) 46.

Table 3. Nevirapine Analogues, Core 3

no. R1 R2 R3 activitya ca. ∆Gexptl

N01 Me Et H 0.125 -9.42
N02 Me Et 2-Me 0.17 -9.24
N03 Me Et 2-Cl 0.15 -9.31
N04 Me Et 3-Me 0.76 -8.35
N06 Me Et 4-Me 1.9 -7.81
N07 H Et H 0.44 -8.67
N08 H Et 4-Me 0.035 -10.17
N09 H Et 4-Cl 0.095 -9.58
N10 H c-Pr 4-Me 0.084 -9.65
N12 Me Pr H 0.45 -8.66
N13 Me t-Bu H 11.0 -6.77
N14 Me COCH3 H 15.3 -6.57
N15 H Et 4-Et 0.11 -9.49
N16 Me CH2SCH3 H 0.85 -8.28
N17 H c-Pr 4-CH2OH 3.0 -7.54
N18 H c-Pr 4-CN 1.25 -8.05
N19 Me CH2CH2F H 2.9 -7.56
N20 H c-Pr H 0.45 -8.66
nevirapine 0.084 -9.65

a Ref 53. N10 is nevirapine. N08 and N13 are excluded as
outliers from the individual regression (eq 7) and from the build-
up model (eqs 19-20). N13 is excluded as an outlier from the final
regression model (eq 21). Activity (enzyme-based assay) is in
micromolar at 25 °C. Estimated experimental binding energies
∆Gexptl ≈ RT ln(activity) are in kcal/mol. ∆Gexptl range ) 3.60, N
) 18.

∆Gb ) R〈∆Evdw〉 + â〈∆ECoul〉 (1)
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for solute cavity formation in water.20,21

Encouraged by prior MD/LR19,22-26 and MC/LR8,27,28

binding studies, we endeavored to treat larger data sets
to see if good correlations with experimental data could
still be obtained with a higher ratio of data points to
parameters. Simultaneously, Duffy and Jorgensen cor-
related results from aqueous MC simulations with
solvation properties for more than 200 diverse organic
compounds.29 The descriptors were expanded from those
in eq 2 to include, for example, hydrogen bond counts
and the hydrophobic, hydrophilic, and aromatic compo-
nents of the SASA. A multivariate fitting approach was
used, which corresponds to eq 3 for computing binding
affinities.

Here, cn represents an optimizable coefficient for the
associated descriptor ên. In principle, any physically
reasonable quantity could be used as a descriptor in this
extended linear response (ELR) approach. Specifically
relevant to protein-ligand binding was the success in
predictions of log P (octanol/water) for 200 solutes. Only
four descriptors were needed to yield a correlation with

Table 4. ASBN Analogues, Core 4

no. R1 activitya ca. ∆Gexptl

A01 H 2.0 -8.09
A02 2-OMe 0.6 -8.83
A03 3-OMe 0.9 -8.58
A04 4-OMe 25 -6.53
A05 2-Me 2.3 -8.00
A06 3-Me 0.4 -9.08
A07 4-Me 9.5 -7.13
A08 2-Cl 4.1 -7.65
A09 3-Cl 0.59 -8.84
A10 4-Cl 3 -7.84
A11 2-Br 5.0 -7.52
A12 3-Br 0.54 -8.89
A14 2-F 3.0 -7.84
A15 3-F 3.0 -7.84
A16 2-CN 5.4 -7.48
A17 3-CN 2.4 -7.98
A19 3-CF3 3.5 -7.74
A20 2,5-di-Cl 0.3 -9.26
A21 3,5-di-Cl 0.07 -10.15
A22 3,5-di-Me 0.01 -11.35
A23 3-Br, 5-Me 0.02 -10.93
A24 3-Cl, 5-Me 0.03 -10.68
A25 3-OMe, 5-Me 0.05 -10.36
A26 3-OMe, 5-CF3 0.09 -10.00
A27 3-OH, 5-Me 0.43 -9.04
A28 3-OEt, 5-Me 0.06 -10.25
A29 3-OPr, 5-Me 0.06 -10.25
A30 3-OBu, 5-Me 0.6 -8.83
nevirapine 0.089 -10.01
Sustiva 0.0009 -12.84
a Ref 54. A02 and A07 are excluded as outliers from the

individual regression (eq 8) and from the build-up model (eqs 14-
20). A19 and A22 are excluded as outliers from the final regression
model (eq 21). Activity (cell-based assay) is in micromolar at 37
°C. Estimated experimental binding energies ∆Gexptl ≈ RT ln(ac-
tivity) are in kcal/mol. ∆Gexptl range ) 4.82, N ) 28.

∆Gb ) R〈∆Evdw〉 + â〈∆ECoul〉 + γ〈∆SASA〉 (2)

∆Gb ) ∑
n

cnên + constant (3)

Table 5. Sustiva Analogues, Core 5

Section A

no. R1 R2 activitya ca. ∆Gexptl

Xs25 CF3 ethynyl-c-Pr 0.002 -12.35
Xs26.2 CF3 ethynyl-Ph 0.0086 -11.45
Xs27.1 CF3 Et 2.3 -8.43
Xs28.1 CF3 Ph 0.145 -10.13
Xs29.1 CF3 SPh 0.860 -9.04
Xs31.1 CF3 allyl 0.22 -9.88
Xs32.1 c-Pr Pr 0.307 -9.67
Xs33.1 Pr Ph 5.4 -7.90
Xs34.1 Et Ph 0.3 -9.68
Xs35 Et Et 16.5 -6.79
Xs36.1 ethynyl Ph 0.65 -9.21
Xs37.1 Et Pr 0.052 -10.76
Xs38 CF2Cl ethynyl-Ph 0.012 -11.67
Xs41.1 CF3 ethynyl-CH2-OMe 0.015 -11.53
Xs43 CF3 ethynyl-CH2-OH 0.55 -9.31
Xs44.2 ethynyl Pr 1.9 -8.55
Xs45 c-Pr ethynyl-CH2-OMe 0.41 -9.49
Xs46.1 Pr t-Bu 5.3 -7.91
Sustiva 0.002 -12.35

Section B

no. R1 R2 activity ca. ∆Gexptl

s01 ethynyl-c-Pr H 0.478b -9.40
s02 ethynyl-c-Pr 6-F 0.19b -9.97
s03 ethynyl-c-Pr 6-i-Pr 1.958b -8.53
s04 ethynyl-c-Pr 6-N(CH3)2 0.816b -9.07
s05 ethynyl-c-Pr 6-O-CF3 1.249b -8.81
s06 ethynyl-c-Pr 5,6-di-F 0.084b -10.47
s07 ethynyl-c-Pr 5,8-di-F 0.796b -9.08
s08 ethynyl-c-Pr 5,6,8-tri-F 0.8b -9.08
s09 ethynyl-c-Pr 5,6,7-tri-F 0.442b -9.45
s10 ethynyl-c-Pr 6-OMe 0.131b -10.20
s11 ethynyl-c-Pr 6-Me 0.133b -10.19
s12 ethynyl-c-Pr 5-F 0.078c -10.52
s13 ethynyl-Et 5-F 0.127c -10.21
s14 ethynyl-Pr 5-F 0.156c -10.09
s15 ethynyl-i-Pr 5-F 0.102c -10.35
s16 ethynyl-c-Pr 6-NO2 0.209c -9.91
s17 ethynyl-Et 6-NO2 0.276c -9.74
s18 ethynyl-Pr 6-NO2 0.304c -9.68
s19 ethynyl-i-Pr 6-NO2 0.199c -9.94
s20 ethynyl-c-Pr 6-NH2 0.802c -9.08
s21 ethynyl-Et 6-NH2 1.894c -8.55
s22 ethynyl-Pr 6-NH2 1.506c -8.69
s23 ethynyl-i-Pr 6-NH2 0.896c -9.01
s24 ethynyl-c-Pr 6-NHCH3 0.608c -9.25
s25 ethynyl-i-Pr 6-NHCH3 0.473c -9.40
Sustiva 0.048b,c -10.40

a Ref 55. Xs33.1 and Xs37.1 are excluded as outliers from the
individual regression (eq 9) and from the build-up model (eqs 18-
20). Xs25, Xs26.2, Xs35, Xs37.1, and Xs38 are excluded as outliers
from the final regression model (eq 21). Activity (enzyme-based
assay) is in micromolar at 37 °C. The activities of analogues Xs25
(Sustiva) and Xs26.2 reflect values determined for single enanti-
omers. For all other compounds, assays were performed using
racemic mixtures. Therefore, the anti-HIV activities were divided
by two, since the biological evaluation of both enantiomers of
Xs26.2 revealed that only one enantiomer is active. Estimated
experimental binding energies ∆Gexptl ≈ RT ln(activity) are in kcal/
mol. ∆Gexptl range ) 5.56, N ) 18. b Ref 56. c Ref 57. s01, s03, and
s05 are excluded as outliers from the individual regression (eq 10)
and from the build-up model (eq 20). s03, s04, s05, and s12 are
excluded as outliers from the final regression model (eq 21).
Activity (enzyme-based assay) is in micromolar at 37 °C. ∆Gexptl
range ) 1.99, N ) 25.
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an r2 of 0.91 and an rms error of 0.53.29 Given the
potential parallel between solute octanol/water parti-
tioning and ligand protein/water partitioning, we also
considered alternative descriptors for protein-ligand
binding for 40 NNRTIs, representing 20 1-[(2-hydroxy-
ethoxy)methyl]-6-(phenylthio)thymine (HEPT, core 1)
and 20 nevirapine analogues (core 3).10 The present
study tests the viability of this approach on a much
larger and more diverse collection of NNRTIs in search
of a general method for prediction of anti-HIV activity.
ELR regressions have also been reported for 20 inhibi-
tors of thrombin.30

It should be emphasized that LR and ELR methods
rely on using experimental data, in conjunction with a
set of descriptors obtained via computer simulations to
derive a regression equation. However, once a reason-
able, cross-validated regression equation is derived, no
additional experimental data are needed in order to
make activity predictions for novel compounds. Only si-
mulations for the bound and unbound states are re-
quired to make activity predictions for any new com-
pound.10 Given the potential utility of the ELR method
for ranking hundreds of compounds in a structure-based
drug design scenario, additional investigation, valida-
tion, and refinement of the method are warranted.

Computational Details

System Setups. Given the large size of HIVRT, a re-
duced model of the NNRTI binding site is utilized, as

previously described in detail.10 Briefly, the model
includes each inhibitor plus the nearest 123 protein
residues that line the NNRTI site (Figure 2). Forty-two
residues are actively sampled in the MC simulations
(95-108A, 179-183A, 186-191A, 198A, 225-229A,
233-239A, 318-319A, 136B, and 138B). The remaining
residues are held fixed (91-94A, 109-110A, 161-178A,
184-185A, 192-197A, 199-205A, 222-224A, 230-
232A, 240-242A, 316-317A, 320-321A, 343-349A,
381-383A, 134-135B, 137B, and 140B) after an initial
full energy minimization of each complex.

The simulations for each protein-ligand complex
were initiated from the X-ray structure coordinates of
HIVRT with MKC-44231 (core 1), UC-78132 (core 2),
nevirapine33 (core 3), Sustiva11 (core 5), HBY-09734 (core
6), PETT35 (core 7), and 9-Cl 4,5,6,7-tetrahydroimidazo-

Table 6. Quinoxaline Analogues, Core 6

no. R1 R2 R3 X activity ca. ∆Gexptl

Q01 CH2SCH3 COO-i-Pr OCH3 S 0.006a,b -11.68
Q02 Et COO-i-Pr H S 0.004a -11.98
Q03 Pr COO-i-Pr H S 0.014a -11.16
Q04 Et COO-i-Pr Cl S 0.006a -11.63
Q05 CH2SCH3 COO-i-Pr F S 0.009a -11.41
Q06 Et COO-i-Pr OCH3 S 0.012a -11.22
Q07 CH2OCH3 COO-i-Pr OCH3 S 0.025a -10.80
Q08 Et COOC(CH3)dCH2 Cl S 0.003a -12.19
Q09 Et COO-allyl Cl S 0.005a -11.76
Q10 CH2SCH3 COOC(CH3)dCH2 Cl S 0.005a -11.82
Q11 CH2SCH3 COO-i-Pr OH S 0.123a -9.81
Q12 Me COO-allyl Cl S 0.135a -9.75
Q13 Me COOC(CH3)dCH2 Cl S 0.034a -10.60
Q14 CH2SCH3 COOCH(CH3)C2H5 OCH3 S 0.023a -10.85
Q15 CH2SCH3 COOCH2CH(CH3)2 OCH3 S 0.113a -9.86
Q16 Et COOCH3 F S 0.037a -10.54
Q17 Et COO-n-Bu F S 0.032a -10.63
Q18 Et COOCH2CH(CH3)2 F S 0.032a -10.63
Q19 Et COOCH(CH3)C2H5 F S 0.026a -10.77
Q20 CH2OCH3 COO-i-Pr F S 0.026a -10.77
Q21 Et COO-i-Pr F O 0.029a -10.71
Q22 CH2SCH3 COOC(CH3)dCH2 Cl O 0.061a -10.24
Q23 Et COOC(CH3)dCH2 F O 0.287a -9.28
Q24 CH2SCH3 COOC(CH3)dCH2 OCH3 O 0.025a -10.79
Q25 Et COO-n-Bu F O 0.272a -9.32
nevirapine 0.208b -9.48

a Ref 58. b Ref 59. Q02 and Q12 are excluded as outliers from
the individual regression (eq 11) and from the build-up model (eqs
14-20). Q02 is excluded as an outlier from the final regression
model (eq 21). Activity (cell-based assay) is in micromolar at 37
°C. Estimated experimental binding energies ∆Gexptl ≈ RT ln(ac-
tivity) are in kcal/mol. ∆Gexptl range ) 2.91, N ) 25.

Table 7. PETT Analogues, Core 7

no. R1 R2 R3 R4 activity
ca.

∆Gexptl

PT301 2-thiazole Ph H H 1.3a -8.35
PT302 2-thiazole 4-F-Ph H H 3.3a -7.78
PT304 2-thiazole 3-F-Ph H H 0.25a -9.37
PT306 2-thiazole 2-F-Ph H H 0.1a -9.93
PT307 2-thiazole 2,6-di-F-Ph H H 0.02a -10.93
PT308 2-thiazole 2-Cl-Ph H H 0.4a -9.08
PT309 2-thiazole 2-Cl, 6-F-Ph H H 0.05a -10.36
PT310 2-thiazole 2-OH-Ph H H 4.0a -7.66
PT311 2-thiazole 2-OMe-Ph H H 0.4a -9.08
PT312 5-Cl-2-thiazole Ph H H 2.7a -7.90
PT313 4-Me-2-thiazole Ph H H 0.4a -9.08
PT314 4-CF3-2-thiazole Ph H H 0.5a -8.94
PT315 4-Et-2-thiazole Ph H H 0.7a -8.74
PT316 4-Pr-2-thiazole Ph H H 1.6a -8.23
PT317 4-i-Pr-2-thiazole Ph H H 1.3a -8.35
PT318 i-Bu Ph H H 1.3a -8.35
PT319 2-thiazole 3-OMe-Ph H H 0.6a -8.83
PT320 2-thiazole 4-OMe-Ph H H 5.5a -7.46
PT322 2-thiazole Ph H Me 10.0a -7.10
PT323 2-thiazole Ph Me H 2.3a -8.00
PT101 2-pyridyl Ph H H 0.2b -9.51
PT102 5-Br-2-pyridyl Ph H H 0.05b -10.36
PT103 5-Me-2-pyridyl Ph H H 0.15b -9.68
PT104 5-Br-2-pyridyl 2,6-di-F-Ph H H 0.013b -11.19
PT106 2-pyrazine Ph H H 10.0b -7.10
PT107 5-Br-2-pyridyl 2-pyridyl H H 0.02b -10.93
PT108 5-Me-2-pyridyl 2,6-di-F-Ph H H 0.01b -11.35
PT109 5-Cl-2-pyridyl 2,4,6-tri-F-Ph H H 0.01b -11.35
PT110 5-Cl-2-pyridyl 3-CN,

2,6-di-F-Ph
H H 0.006b -11.67

PT111 5-Br-2-pyridyl 2-CN, 2-OMe,
6-F-Ph

H H 0.003b -12.10

PT112 5-Br-2-pyridyl 2-Cl, 3-OEt,
6-F-Ph

H H 0.007b -11.57

PT113 5-Br-2-pyridyl 3-CONHCH3
2,6-di-F-Ph

H H 0.08b -10.07

PT114 5-Cl-2-pyridyl 4-N(CH3)2,
2,6-di-F-Ph

H H 0.018b -10.99

PT115 5-Br-2-pyridyl 3-OMe,
2,6-di-F-Ph

H H 0.025b -10.79

nevirapine 0.15a,b -9.68
9-Cl TIBO 0.25a,b -9.37

a Ref 60. b Ref 61. PT309, PT107, and PT111 are excluded as
outliers from the individual regression (eq 12) and from the build-
up model (eqs 14-20). PT314, PT318, and PT107 are excluded as
outliers from the final regression model (eq 21). Activity (cell-based
assay) is in micromolar at 37 °C. Estimated experimental binding
energies ∆Gexptl ≈ RT ln(activity) are in kcal/mol. ∆Gexptl range )
5.00, N ) 34.
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[4,5,1-jk][1,4]benzodiazepine-2(1H)thione and -one (TI-
BO)36 (core 8). The 2-amino-6-arylsulfonylbenzonitrile
(ASBN, core 4) simulations were initiated from a model
constructed by docking in the same manner as previ-
ously described for Sustiva.11 The simulations for the

2-alkylthio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-
5-alkylpyrimidin-4-(3H)one (DABO) analogues (test set)
were initiated from the X-ray structure coordinates of
HIVRT with MKC-44231 by manual docking. The initial
conformations for bound ligands were generated using
manual docking techniques or automatically using the
GenMol program.37 GenMol performs a conformational
search and optimization for a ligand in a binding site;
it then saves the lowest energy complexes for subse-
quent MC calculations or other analyses.

MC Simulations. Each protein-inhibitor complex
was subjected to 50 steps of conjugate gradient (CG)
energy minimization, using a distant-dependent dielec-
tric constant of 4 (ε ) 4r), to relax the crystal structure
prior to the MC simulations. For the MC simulations,
a 22 Å water cap was used containing 851 (bound) and
1485 (unbound) TIP4P38 water molecules centered on
the ligand. All HIVRT side chains with an atom within
ca. 10 Å from the center of the ligand were sampled,
the protein backbone was fixed after the CG minimiza-
tion, and each inhibitor was fully flexible. Bond lengths
for the protein remained fixed after the initial energy
minimizations. A protein residue-inhibitor list, which
was kept constant during the entire simulation, was
determined for each complex during the initial solvent
equilibration stage of the simulation. A MC move for a
side chain was randomly chosen every 10 configurations,
while a move for the inhibitor was attempted every 56
configurations. All remaining moves were for solvent
molecules. Solvent-solvent neighbor lists were also
used, and the maximum number of internal coordinates
to be varied for an attempted move was limited to 30.
All MC simulations and energy calculations were per-
formed with the MCPRO39 program utilizing CM1A
charges scaled by 1.08 with the OPLS-AA force field40

for the ligand. Residue-based cutoffs at 9 Å were used
for the solvent-solvent, solute-solvent, and intrasolute
nonbonded interactions.

Bound MC simulations for protein-inhibitor com-
plexes consisted of 10 million configurations of solvent-
only equilibration, 10 million configurations of full
equilibration, and 10 million configurations of averag-
ing. Unbound MC simulations were subjected to an
annealing protocol in order to reduce the effect of
starting conditions on simulation results, as described
in the earlier work.10 Briefly, 10 million configurations
of solvent-only equilibration are performed followed by
5 million configurations in which only the water and
the dihedral angles for each inhibitor are sampled. The
MC acceptance rates for free inhibitors are enhanced
at this stage by increasing the temperature to 727 °C
(1000 K) for each attempted inhibitor move. The system
is then subjected to an additional 5 million configura-
tions of full equilibration at the normal temperature (25
or 37 °C), followed by 10 million configurations of
averaging. The latter three processes are repeated for
a total of five cycles.10

Experimental Activities. The experimental activi-
ties reported for each analogue series were converted
into approximate free energies of binding (∆Gexptl) using
eq 4, which should correspond to relative free energies
of binding for a closely related series of inhibitors.41

Table 8. TIBO Analogues, Core 8

no. R1 R2 X activity ca. ∆Gexptl

B01 8-Br dimethyl-allyl S 0.003a -12.09
B02 8-Cl dimethyl-allyl S 0.0043a -11.87
B03 8-F dimethyl-allyl S 0.0058a -11.69
B04 8-Me dimethyl-allyl S 0.0136a -11.16
B05 9-F dimethyl-allyl S 0.025a -10.79
B06 9,10-di-Cl dimethyl-allyl S 0.0255a -10.76
B07 8-CtCH dimethyl-allyl S 0.0296a -10.68
B08 9-Cl dimethyl-allyl S 0.034a -10.60
B09 H dimethyl-allyl S 0.044a -10.44
B10 8-Br dimethyl-allyl O 0.0473a -10.39
B11 8-CN dimethyl-allyl S 0.0563a -10.29
B12 8-COH dimethyl-allyl S 0.188a -9.54
B13 9-Me diethyl-allyl O 0.3142a -9.23
B14 8-CtCH dimethyl-allyl O 0.4376a -9.02
B15 9-CF3 dimethyl-allyl S 0.485a -8.96
B16 8-Me dimethyl-allyl O 0.989a -8.52
B17 10-Br dimethyl-allyl S 1.075a -8.47
B18 8-CN dimethyl-allyl O 1.1396a -8.43
B19 9-NO2 methyl-c-Pr S 2.45a -7.96
B20 H dimethyl-allyl O 3.155b -7.81
B21 9-CF3 dimethyl-allyl O 5.919a -7.42
B22 9-NO2 methyl-c-Pr O 33.43a -6.35
9-Cl TIBO 0.034a -10.60

a Ref 62. b Ref 8. B17 and B20 are excluded as outliers from
the individual regression (eq 13) and from the build-up model (eqs
15-20). B15, B17, and B21 are excluded as outliers from the final
regression model (eq 21). Activity (cell-based assay) is in micro-
molar at 37 °C. Estimated experimental binding energies ∆Gexptl
≈ RT ln(activity) are in kcal/mol. ∆Gexptl range ) 5.74, N ) 22.

Figure 2. HIVRT binding site model solvated by a 22 Å cap
of water. Green residues sampled in the MC simulations,
orange residues are rigid, and gray residues are not used.
Compound UC-781 (core 2) in magenta shows the location of
the NNRTI binding site. Crystal structure coordinates (PDB
entry 1rt4) are from ref 32.

∆Gexptl ≈ RT ln(activity) (4)
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For the NNRTIs, both cell-based (cores 1, 2, 4, and 6-8)
and enzyme-based (cores 3 and 5a,b) activities are
reported (Tables 1-8). For three series (cores 4, 6, and
7), both types of activity measurements were reported.
Plotting cell-based vs enzyme-based activities for these
three series yields correlation coefficients of r2 ) 0.92,
0.69, and 0.84, respectively, which implies reasonable
agreement between the two types of independent mea-
surements. Experimental binding free energies were
then approximated for each data set (Tables 1-8) using
the anti-HIV activities obtained from the cell-based
assays, if available (cores 1, 2, 4, and 6-8). Otherwise,
enzyme-based data was employed (cores 3 and 5a,b).

In some cases, the activity reported in different
sources for a given compound varies by more than an
acceptable amount (ca. 0.5 kcal/mol), which may be due
to differences in assay conditions, protocols, and/or
methods. To minimize the effects of these differences
and allow regressions to include multiple data sets
simultaneously, indicator variables (which can adopt
values of 1 or 0) were employed where needed, with
adjustable coefficients to shift the computed ∆G values.
The experimental anti-HIV activities of compounds
common to the different assays (Table 10) were used as
a qualitative measure of which data sets need to be
corrected and by how much. Combination fits that
included HEPT (core 1), carboxanilide (core 2), Sustiva
(core 5b), and TIBO (core 8) series employed adjustable
shifting parameters for the indicator variables Hcorr,
Ucorr, Scorr, and Bcorr, respectively.

Results and Discussion
Individual Regression Equations. Correlations to

each individual set of anti-HIV activities were pursued
with the statistical software package JMP42 using the
generic ELR regression, eq 3. Only statistically signifi-
cant descriptors were included in the linear regressions.
This condition was enforced by requiring that the
probability greater than F ratios (regression model
mean square/error mean square) is small (typically less
than 0.005). Consequently, the probability of a greater
F value occurring by chance (Prob > F) is low. It became
apparent quickly that various descriptor combinations
yield similar correlation coefficients (r2 values) and that
only one or two outliers in the data can adversely affect
the significance of important descriptors. For this
reason, as part of the standard fitting protocol, physi-
cally reasonable regression equations were sought that
contained descriptors in common among the nine dif-
ferent data sets, subject to the constraint that up to 10%
of the outliers would be eliminated. On average, the
cross-correlation coefficient between any two of the
descriptors used was less than 0.5. Outliers were
selected and excluded based on the largest residual
values, provided that the number of descriptors in
common was maximized. Outlier compounds excluded
from the individual regression equations (eqs 5-13),
combined regressions (eqs 14-20), and final regression

Table 9. S-DABO, Test Set

no. R1 R2 R3 R4 activity ca. ∆Gexptl

D01 i-Pr H Me Ph 0.9a -8.58
D02 Me H Me 2,6-di-F-Ph 0.18a -9.57
D03 i-Pr H Me 2,6-di-F-Ph 0.05a -10.35
D04 n-Bu H Me 2,6-di-F-Ph 0.07a -10.15
D05 Me Me Me 2,6-di-F-Ph 0.04a -10.50
D06 i-Pr Me Me 2,6-di-F-Ph 0.007a -11.57
D07 n-Bu Me Me 2,6-di-F-Ph 0.008a -11.49
D08 i-Pr H Et Ph 0.8a -8.65
D09 i-Pr H Et 2,6-di-F-Ph 0.08a -10.07
D10 i-Pr H H 2,6-di-F-Ph 0.05a -10.36
D11 i-Pr Me H 2,6-di-F-Ph 0.05a -10.36
D12 c-hexyl H Me Ph 0.6a -8.83
D13 c-hexyl H Me 2,6-di-F-Ph 0.16a -9.64
D14 c-hexyl Me Me 2,6-di-F-Ph 0.018a -10.99
D15 c-hexyl H Et Ph 1.3a -8.35
D16 c-hexyl H Et 2,6-di-F-Ph 0.05a -10.36
D17 c-pentyl H Me Ph 0.6a -8.83
D18 c-pentyl H Me 2,6-di-F-Ph 0.03a -10.68
D19 c-pentyl Me Me 2,6-di-F-Ph 0.006a -11.67
D20 c-pentyl H Et Ph 1.0b -8.51
D21 c-pentyl H Et 2,6-di-F-Ph 0.15a -9.68
D22 c-pentyl H H 2,6-di-F-Ph 0.08a -10.07
D23 c-pentyl Me H 2,6-di-F-Ph 0.08a -10.07
D24 s-Bu H H 4-F-Ph 8.7b -7.18
D25 s-Bu Me H 4-F-Ph 11b -7.04
D26 s-Bu Me H 4-NO2-Ph 2b -8.09
D27 s-Bu H H 4-NO2-Ph 1.5b -8.27
MKC-442 0.03a,b -10.68
nevirapine 0.3a -9.26

a Ref 45. b Ref 46. All compounds are included in predictions.
Activity (cell-based assay) is in micromolar at 37 °C. Estimated
experimental binding energies ∆Gexptl ≈ RT ln(activity) are in kcal/
mol. ∆Gexptl range ) 4.63, N ) 27.

Table 10. Estimated Experimental Binding Energies ∆Gexptl ≈ RT ln(Activity) in kcal/mol for Compounds in Common (Anchors)
among the Eight NNRTI Cores from Different Literature Sourcesa

A B C D

core (name) literature ref ca. ∆Gexptl nevirapine ca. ∆Gexptl 9-Cl TIBO ca. ∆Gexptl Sustiva ca. ∆Gexptl MKC-442

1 (HEPT) 48 -11.92
2 (carboxanilide) 51, 52 -10.76 -10.37 -11.35
3 (nevirapine) 53 -9.65
4 (ASBN) 54 -10.01 -12.84
5a (Sustiva) 55 -12.35
5b (Sustiva) 56, 57 -10.40
6 (quinoxaline) 59 -9.48
7 (PETT) 60, 61 -9.68 -9.37
8 (TIBO) 62 -10.60
test set (DABO) 45, 46 -9.26 -10.68

a Experimental values from Tables 1-9. The compounds in common give some indication as to how much a given data set should be
shifted to bring the experimental values for the same compound from different literature sources in reasonable agreement. For example,
the activities for nevirapine (column A) reported in the nevirapine, ASBN, quinoxaline, and PETT series (cores 3, 4, 6, and 7) agree
within 0.5 kcal/mol. However, the corresponding value within the carboxanilide series (core 2, column A) is ca. 1 kcal/mol lower, indicating
that an offset of ca. +1 kcal/mol is needed. A similar difference in experimentally determined anti-HIV activities is observed with 9-Cl
TIBO (column B, cores 2 and 7). The 9-Cl TIBO activity reported in the TIBO series (core 8, column B) is very close to the value reported
in the carboxanilide series (core 2, column B), suggesting a similar offset of +1 kcal/mol for the TIBO analogues. Similarly, the difference
between the activities for Sustiva in cores 4 and 5a,b (column C) indicates an offset of approximately -2 kcal/mol for core 5b. Finally, the
difference in activity of ca. +0.5 kcal/mol for MKC-442 between the HEPT and carboxanilide series (column D, cores 1 and 2) adds to the
carboxanilide difference suggested above, indicating an offset of ca. +1.5 kcal/mol for the HEPT series.
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model (eq 21) are noted in Tables 1-8. Following this
protocol, only 10 different descriptors are needed to
describe the binding of the different NNRTI cores, as
presented in regression eqs 5-13.

Given the diversity among the NNRTI cores, it is
unlikely that all of the descriptors would be significant
for all of the regressions, although on the basis of our
earlier ELR study of NNRTIs,10 we anticipated that the
ligand-protein Lennard-Jones interaction energy (EXX-
LJ) and the change in the total number of hydrogen
bonds for the inhibitor upon binding (∆HBtotal) would
correlate well with anti-HIV activities. These two terms
consistently emerge as important factors that control
binding (eqs 5-13, Table 11). Other significant descrip-
tors were ∆FOSA, the change in the hydrophobic SASA;
∆WPSA, the change in the weakly polar (halogens, P,
and S) SASA; ∆PISA, the change in the aromatic SASA;
∆dipole, the change in dipole moment of the inhibitor;
qp_∆Ghyd, an estimate of the free energy of hydration
for the inhibitor obtained using the QikProp program;43

DtoProPi, the number of hydrogen bonds donated by the
ligand to a protein π system;10 water-bridges, the
number of bridging water molecules that mediate

hydrogen bonding between ligand and protein; and
qp_#rotor, the number of rotatable bonds in the ligand.
Correlation plots from the nine fits (eqs 5-13) of ∆Gcalcd
vs ∆Gexptl are presented in Figures 3-11 and show good
accord between experiment and theory. An average
correlation coefficient r2 of 0.70, an average rms error
of 0.67 kcal/mol, and an average unsigned error of only
0.50 kcal/mol were obtained across the NNRTI series.
Thus, good fits are readily found for individual chemo-
types using a small number of descriptors.

Descriptor Significance. In most cases, the de-
scriptors used in the regressions make obvious physical

Table 11. Significant Descriptors from Individual Fits of Each NNRTI Core (Eqs 5-13)a

core name r2 EXXLJ ∆HBtot water-bridges qp_#rotor ∆FOSA ∆WPSA ∆PISA ∆dipole qp_∆Ghyd DtoProPi

1 HEPT 0.85 + - +
2 carboxanilide 0.63 + + + -
3 nevirapine 0.54 + - -
4 ASBN 0.74 + - +
5a Sustiva 0.67 + +
5b Sustiva 0.62 + -
6 quinoxaline 0.82 + - +
7 PETT 0.66 + - -
8 TIBO 0.79 + -

a Descriptors in common share a + or - in the same column, which also indicates the sign of the fitted coefficient.

∆Gcalcd (core 1) ) 0.29〈EXXLJ〉 - 1.3〈∆HBtotal〉 +
0.013〈∆FOSA〉 + 4.7 (5)

∆Gcalcd (core 2) ) 0.11〈EXXLJ〉 + 0.015〈∆WPSA〉 +
0.32〈∆dipole〉 - 0.24〈qp_∆Ghyd〉 - 5.9 (6)

∆Gcalcd (core 3) ) 0.24〈EXXLJ〉 - 0.85〈∆HBtotal〉 -
1.1〈DtoProPi〉 - 0.015 (7)

∆Gcalcd (core 4) ) 0.40〈EXXLJ〉 -
1.1〈water-bridges〉 + 0.81〈qp_#rotor〉 + 6.7 (8)

∆Gcalcd (core 5a) ) 0.35〈EXXLJ〉 + 0.015〈∆WPSA〉 +
6.6 (9)

∆Gcalcd (core 5b) ) 0.012〈∆PISA〉 -
0.11〈qp_∆Ghyd〉 - 11 (10)

∆Gcalcd (core 6) ) 0.17〈EXXLJ〉 - 0.79〈∆HBtotal〉 +
0.31〈qp_#rotor〉 - 5.6 (11)

∆Gcalcd (core 7) ) 0.26〈EXXLJ〉 - 0.91〈∆HBtotal〉 -
1.7〈water-bridges〉 + 3.1 (12)

∆Gcalcd (core 8) ) 0.53〈EXXLJ〉 - 0.91〈∆HBtotal〉 + 12
(13)

Figure 3. Predicted binding affinities (∆Gcalcd) computed
using eq 5 vs experimental activities (∆Gexptl) for HEPT
analogues (core 1, Table 1) with HIVRT.

Figure 4. Predicted binding affinities (∆Gcalcd) computed
using eq 6 vs experimental activities (∆Gexptl) for carboxanilide
analogues (core 2, Table 2) with HIVRT.
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sense. It should be noted that the descriptors used for
the HEPT (core 1, eq 5) and nevirapine (core 3, eq 7)
analogues are consistent with those reported in the
earlier ELR study10 despite the fact that a different

charge model was used. Also, the DtoProPi descriptor
in eq 7 replaces the secondary amide indicator used in
the previous study to account for π type hydrogen bonds,

Figure 5. Predicted binding affinities (∆Gcalcd) computed
using eq 7 vs experimental activities (∆Gexptl) for nevirapine
analogues (core 3, Table 3) with HIVRT.

Figure 6. Predicted binding affinities (∆Gcalcd) computed
using eq 8 vs experimental activities (∆Gexptl) for ASBN
analogues (core 4, Table 4) with HIVRT.

Figure 7. Predicted binding affinities (∆Gcalcd) computed
using eq 9 vs experimental activities (∆Gexptl) for Sustiva
analogues (core 5a, Table 5a) with HIVRT.

Figure 8. Predicted binding affinities (∆Gcalcd) computed
using eq 10 vs experimental activities (∆Gexptl) for Sustiva
analogues (core 5b, Table 5b) with HIVRT.

Figure 9. Predicted binding affinities (∆Gcalcd) computed
using eq 11 vs experimental activities (∆Gexptl) for quinoxaline
analogues (core 6, Table 6) with HIVRT.

Figure 10. Predicted binding affinities (∆Gcalcd) computed
using eq 12 vs experimental activities (∆Gexptl) for PETT
analogues (core 7, Table 7) with HIVRT.
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which were identified as important for the binding of
nevirapines.10

Eight out of the nine regressions shown in eqs 5-13
contain the EXXLJ descriptor. Because the EXXLJ values
are always negative, the associated positive coefficient
implies that a good geometrical fit between the ligand
and the protein is important. Favorable packing con-
tributions to binding are contained in this term as well
as any unfavorable steric interactions.

The next most common descriptor in eqs 5-13 is
∆HBtotal (cores 1, 3, and 6-8). In general, the change
in the total number of hydrogen bonds for the inhibitor
upon binding is negative given that water provides a
better hydrogen-bonding environment than the protein
and the fitted coefficients for ∆HBtotal are negative. For
these regressions, there is an energetic penalty between
0.79 and 1.3 kcal/mol for each net hydrogen bond lost
in the binding event.

Two regressions contain the water-bridges descriptor
(cores 4 and 7). Here, the negative coefficient implies a
gain in binding free energy of between -1.1 and -1.7
kcal/mol for each water-mediated protein-ligand hy-
drogen bond. This is consistent with the magnitudes of
the coefficients for the other hydrogen-bonding descrip-
tors, ∆HBtotal and DtoProPi. Examples for the DtoProPi
and water-bridges descriptors are presented in Figures
12 and 13. Note that the position of bridging water
molecules observed in the MC simulations is consistent
with those from the HEPT31 and nevirapine33 X-ray
structures despite the fact that crystallographic waters
were not used.

Two regressions contain the qp_#rotor descriptor
(cores 4 and 6). This descriptor is expected to provide
some measure of the entropy loss due to conformational
restrictions imposed on the ligands upon binding. Here,
a positive coefficient implies an energetic penalty of
between 0.31 and 0.81 kcal/mol for each rotatable bond.
Böhm et al.44 reported a rotatable bond penalty of 0.34
kcal/mol based on a study of 45 different protein-ligand
systems, and a penalty of 0.44 kcal/mol was obtained
in the ELR study of thrombin inhibitors.30 Inclusion of
a logical descriptor like this for other series does not
necessarily lead to a poorer regression; it simply does
not emerge as statistically significant.

The burial of hydrophobic SASA (∆FOSA) found to
be important here and in the previous ELR study for
the HEPT series10 is easily interpreted as reflecting the
hydrophobic effect given the nonpolar nature of the
NNRTI binding site. Burial of aromatic SASA (∆PISA),
an important descriptor for the Sustiva analogues from
core 5b (Table 5b), also makes physical sense given the
large number of aromatic residues in the NNRTI site.
The burial of weakly polar SASA (∆WPSA; halogens,
sulfur, and phosphorus) emerges as important in fits
for carboxanilides (eq 6) and Sustiva analogue 5a (eq
9). For the halogens, this may also be reflective of their
relatively hydrophobic nature.

The ∆dipole descriptor is significant only for the
carboxanilide analogues (core 2). The crystal structure
complexes of carboxanilide analogues with HIVRT32

reveal a cis configuration around the amide/thioamide
bond, although this bond is expected to be and was
treated here as trans in the unbound state. The ∆dipole
descriptor reflects the conformational change in the
molecules between bound and unbound states, which
ranges from 0.64 to 7.59 D for the carboxanilide series.
The conformation of the thioamide bond in PETT
analogues also adopts a cis configuration in the bound
state. For this core, however, conformational analysis
shows that the most likely configuration for unbound
states is also cis due to the formation of an internal
hydrogen bond between the pyridine or the thiazole ring
nitrogen and a thiourea hydrogen (Scheme 1, Table 7).
Other NNRTI cores are not expected to undergo such
large changes in conformation between the two states.

Finally, the qp_∆Ghyd descriptor emerges as impor-
tant only for carboxanilide (core 2) and Sustiva (core
5b) compounds. This descriptor provides an estimate
of the free energy of transfer from the gas phase into
water and is always negative. Because the fitted coef-
ficients in eqs 6 and 10 are negative, the most hydro-
philic compounds from cores 2 and 5b pay the largest
desolvation penalty toward the computed binding free
energy, as would be expected.

Combination Regression Equations. Correlations
that included multiple data sets were pursued using a

Figure 11. Predicted binding affinities (∆Gcalcd) computed
using eq 13 vs experimental activities (∆Gexptl) for TIBO
analogues (core 8, Table 8) with HIVRT.

Figure 12. Example of a hydrogen bond donated by a ligand
(nevirapine in green) to an aromatic ring in the NNRTI binding
pocket (DtoProPi descriptor).
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build-up approach in which the descriptors and signs
of their coefficients were examined and the variation
and type (cell or enzyme-based) of experimental data
were considered. Table 11 lists the descriptors and signs
of the coefficient for each descriptor in regression eqs
5-13. Table 10 lists the anti-HIV activities for the
compounds in common (anchors) among the eight
NNRTI cores from different literature sources.

The cell-based anti-HIV activities for nevirapine are
in agreement to within ca. 0.5 kcal/mol from the data
sets for the ASBN (core 4), quinoxaline (core 6), and
PETT series (core 7), as shown in Table 10. Fitting these
series together and incorporating the four descriptors
common to the individual fits (eqs 8, 11, 12, Table 11)
yields eq 14 with an r2 of 0.66 for the 80 compounds.
The same outlier compounds excluded from the indi-
vidual fits were removed here during the build-up
procedure. Other series were systematically added to
this fit as described below.

The individual fit for TIBO analogues (eq 13, Table
11) contains only two descriptors (EXXLJ and ∆HBtotal),
both being included in eq 14. Therefore, no additional
descriptors are required although an indicator variable
(Bcorr) was added to correct for the experimental varia-
tion, as reflected in Table 10 and described in the
Experimental Activities section above. The resultant
regression (eq 15) for the 100 compounds has an r2 value
of 0.66 and represents cores 4 and 6-8. The coefficient
for the indicator variable in eq 15 has the expected sign
and magnitude (+0.70 kcal/mol) for correcting the TIBO

data to the ASBN, quinoxaline, and PETT activities.

Incorporating HEPT (core 1) data into the fit required
the addition of ∆FOSA, which was found to be signifi-
cant in the individual HEPT regression (eq 5, Table 11).
An indicator variable was also added (Hcorr) as suggested
by the differences between MKC-442 activities and the
other experimental data (Table 10). The resultant
regression (eq 16) includes 117 compounds representing
cores 1, 4, and 6-8 and has an r2 value of 0.68. Here,
the coefficient for the indicator variable Hcorr has the
correct sign but is too large based on the experimental
data in Table 10, which suggests a value of 1.5 instead
of the fitted 3.1 kcal/mol.

The carboxanilide data set (core 2) was incorporated
into the combination fit by the addition of ∆WPSA,
∆dipole, and qp_∆Ghyd descriptors used for the indi-
vidual fit (eq 6, Table 11) and the indicator variable
Ucorr. The resultant regression (eq 17) representing cores
1, 2, 4, and 6-8 now includes 156 compounds although
the r2 value degrades to 0.60. The coefficients for the
indicator variables in eq 17 have the correct sign,
although the magnitudes for Hcorr and Ucorr are 0.5-

Figure 13. Two representative examples of water-mediated hydrogen bonds (water-bridges descriptor) between ligand and protein.
Ligands are shown in green, MKC-442 is on the left, and nevirapine is on the right.

∆Gcalcd (cores 4, 6, 7) ) 0.33〈EXXLJ〉 -
0.44〈∆HBtotal〉 - 0.69〈water-bridges〉 +

0.67〈qp_#rotor〉 + 1.9 (14)

∆Gcalcd (cores 4 and 6-8) ) 0.34〈EXXLJ〉 -
0.48〈∆HBtotal〉 - 0.72〈water-bridges〉 +

0.67〈qp_#rotor〉 + 0.70(Bcorr) + 2.4 (15)

∆Gcalcd (cores 1, 4, 6-8) ) 0.31〈EXXLJ〉 -
0.49〈∆HBtotal〉 - 0.87〈water-bridges〉 +

0.58〈qp_#rotor〉 + 0.0033〈∆FOSA〉 + 0.84(Bcorr) +
3.1(Hcorr) + 2.0 (16)
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0.75 kcal/mol larger than expected.

The inclusion of Sustiva (cores 5a,b) and nevirapine
(core 3) analogues into the combination fit was delayed
in order to first derive correlations to anti-HIV activities
obtained using the more common cell-based (ASBN,
quinoxaline, PETT, TIBO, HEPT, and carboxanilide)
rather than enzyme-based (Sustiva and nevirapine)
assays. To include the Sustiva analogues from Table 5a,
no indicator variable or additional descriptors should
be necessary since eq 17 already incorporates all of the
descriptors used in the individual fit (eq 9, Table 11).
Furthermore, Table 10 indicates that the experimental
anti-HIV activities for Sustiva from the ASBN and
Sustiva study (Table 5a) are similar. The combination
regression (cores 1, 2, 4, 5a, and 6-8) shown in eq 18
has 172 compounds with an r2 value of 0.56. The
coefficients for the indicator variables continue to have
the correct sign although the expected values for Hcorr
and Ucorr are still about 0.5 kcal/mol too large.

Nevirapine analogues (core 3) were then incorporated
into the combination fit by adding in the DtoProPi
descriptor. No indicator variable is required to correct
the nevirapine data in Table 10. This combination fit
(eq 19) represents eight cores 1-4, 5a, and 6-8 and
yields an r2 of 0.56 for 188 compounds. The coefficients
for the indicator variables continue to have the correct
sign although Bcorr is now too small and no longer
significant while Ucorr is still 0.5 kcal/mol too large. Hcorr
is now close to the expected value of ca. 1.5 kcal/mol.

Finally, the last data set representing the second set
of Sustiva analogues shown in Table 5b was added to
the combination fit by incorporating one additional
descriptor ∆PISA, and indicator variable, Scorr. The
resultant combination regression, eq 20, contains 210
compounds, has an r2 value of 0.53, and has an rms
error of 0.95 kcal/mol. As before, all coefficients for
indicator variables continue to have the correct sign.
The magnitude for Scorr to correct the Sustivas from

Table 5b is too small at -0.11 kcal/mol as compared
with the expected value of ca. -2.0 kcal/mol (Table 10).
For other offsets, Bcorr is still too small, Ucorr is still 0.5
kcal/mol too large, and Hcorr has the expected value of
ca. 1.5 kcal/mol.

The regression results obtained from this build-up
approach are condensed into Table 12. Here, the signs
of each fitted coefficient in the combination regression
remain constant, but as more data sets are included,
the significance of the descriptors changes. Although the
results are encouraging given the large number of
compounds, refinements to the last regression (eq 20)
were pursued in an attempt to increase the generality
and robustness of the model. Relaxing the restrictions
imposed in the build-up procedure on the number and
type of descriptors yielded a new regression equation
(eq 21, Table 12) with an improvement in r2 from 0.53
to 0.60. The correlation with experiment for this fit is
presented in Figure 14. Here, the rms error is 0.86 kcal/
mol and the average unsigned error is only 0.69 kcal/
mol for 210 compounds.

It should be noted that 10% of the total of 234 com-
pounds were still removed as outliers (Tables 1-8); 42%
of the outliers excluded from eq 21 are the same as from
the individual fits. The coefficients for Hcorr and Ucorr

indicator variables are now near the target values of
1.5 and 1 kcal/mol, respectively, and the regression
intercept is small. Furthermore, the Bcorr and Scorr

offsets, as well as the ∆PISA and qp_∆Ghyd descriptors,
are no longer significant. The two descriptors were
significant only in the individual regressions for the
carboxanilide (core 2, eq 6) and Sustiva (core 5b, eq 10)
series. Given the small data range of experimental anti-
HIV activities for these two data sets (Tables 2 and 5b),
reasonable individual regressions could not be obtained
using more common descriptors, such as EXXLJ and
∆HBtot (Table11).Consequently,the∆PISAandqp_∆Ghyd

descriptors became insignificant when all eight series
were considered in deriving the final regression model.
A new significant descriptor (∆eintra) emerged, which
represents the change in intramolecular strain energy
of the ligand upon binding. ∆eintra was also found to
be useful in the previous thrombin studies.30 Cross-
correlation of descriptors in the final model was reex-
amined, and it was determined that the average value
of all the pairwise correlation coefficients between the

∆Gcalcd (cores 1, 2, 4, 6-8) ) 0.21〈EXXLJ〉 -
0.12〈∆HBtotal〉 - 0.78〈water-bridges〉 +
0.35〈qp_#rotor〉 + 0.0046〈∆FOSA〉 +
0.0089〈∆WPSA〉 + 0.18〈∆dipole〉 -

0.070〈qp_∆Ghyd〉 + 0.65(Bcorr) + 2.3(Hcorr) +
1.5(Ucorr) - 1.1 (17)

∆Gcalcd (cores 1, 2, 4, 5a, 6-8) ) 0.22〈EXXLJ〉 -
0.10〈∆HBtotal〉 - 0.69〈water-bridges〉 +
0.36〈qp_#rotor〉 + 0.0038〈∆FOSA〉 +

0.011〈∆WPSA〉 + 0.16〈∆dipole〉 -
0.052〈qp_∆Ghyd〉 + 0.59(Bcorr) + 2.0(Hcorr) +

1.6(Ucorr) - 0.48 (18)

∆Gcalcd (cores 1-4, 5a, 6-8) ) 0.19〈EXXLJ〉 -
0.15〈∆HBtotal〉 - 0.70〈water-bridges〉 +
0.19〈qp_#rotor〉 + 0.0045〈∆FOSA〉 +

0.014〈∆WPSA〉 + 0.19〈∆dipole〉 -
0.079〈qp_∆Ghyd〉 - 0.70〈DtoProPi〉 + 0.18(Bcorr) +

1.7(Hcorr) + 1.6(Ucorr) - 1.1 (19)

∆Gcalcd (all cores) ) 0.18〈EXXLJ〉 - 0.14〈∆HBtotal〉 -
0.69〈water-bridges〉 + 0.18〈qp_#rotor〉 +

0.0041〈∆FOSA〉 + 0.013〈∆WPSA〉 + 0.18〈∆dipole〉 -
0.082〈qp_∆Ghyd〉 - 0.55〈DtoProPi〉 -

0.00041〈∆PISA〉 + 0.17(Bcorr) + 1.6(Hcorr) +
1.5(Ucorr) - 0.11(Scorr) - 1.8 (20)

∆Gcalcd (all cores) ) 0.15〈EXXLJ〉 - 0.22〈∆HBtot〉 -
0.56〈water-bridges〉 + 0.24〈qp_#rotor〉 +

0.0061〈∆FOSA〉 + 0.015〈∆WPSA〉 + 0.14〈∆dipole〉 -
0.73〈DtoProPi〉 + 0.036〈∆eintra〉 + 1.2(Hcorr) +

0.94(Ucorr) - 1.3 (21)
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nine descriptors and the two offsets was 0.17. Equation
21 represents the best regression model found that
correlates well with all nine data sets using physically
reasonable descriptors of binding. The absolute and
relative errors are low given the size and diversity of
the training set and the fact that only nine descriptors
and two offsets are used (eq 21, Table 12). Smaller
errors would be unrealistic given the fluctuations in the
MC simulations, the uncertainties in the individual
experimental activities, and the merging of the experi-
mental data sets (Table 10).

Cross-Validated Anti-HIV Activity Predictions.
Cross-validation was pursued to gauge the predictive
ability of the model for compounds not included in the
training set. In the previous ELR studies, cross-
validated correlation coefficients (q2) were reported as
obtained by the leave-one-out (LOO) procedure.10,28,30

In LOO, a series of fits to the activity data are generated
leaving out a single inhibitor. The equation for each fit
is then used to predict the activity for the compound
left out of the fit, and the correlation of these predictions
with the experimental values is computed and reported

as q2. As in the prior studies, the q2 value determined
by the LOO procedure shows little degradation from the
r2 results. For the 210 NNRTIs, the cross-validated q2

was 0.55, with an rms error of 0.89 kcal/mol and an
average unsigned error of 0.73 kcal/mol as compared to
experiment.

To better assess the quality and utility of the regres-
sion model developed here, the LOO idea was further
extended by leaving out one of the nine NNRTI data
sets, refitting the model for the remaining compounds,
and then predicting the activities for the excluded data
set. This is clearly a more difficult challenge. These
calculations were carried out for the two cores with the
largest activity ranges, HEPT (core 1) and TIBO (core
8). As summarized in Table 13, in both cases, correla-
tions are obtained that would be useful in library design
to filter more active from less active compounds. The
q2 values are 0.66 and 0.48 for the HEPT and TIBO
series, respectively. It should be emphasized that the
former outliers were not excluded from the data set
being predicted for these tests. However, this represents

Table 12. Regression Equations that Incorporate Multiple NNRTI Coresa

eq cores no. r2 EXXLJ ∆HBtot

water-
bridges

qp_
#rotor ∆FOSA ∆WPSA ∆PISA ∆dipole

qp_
∆Ghyd DtoProPi B H U S ∆eintra

14 4, 6, 7 80 0.66 + - - +
15 4, 6-8 100 0.66 + - - + +
16 1, 4, 6-8 117 0.68 + - - + + + +
17 1, 2, 4, 6-8 156 0.60 + - - + + + + - + + +
18 1, 2, 4, 5a,

6-8
172 0.56 + - - + + + + - + + +

19 1-4, 5a, 6-8 188 0.56 + - - + + + + - - + + +
20 1-8 210 0.53 + - - + + + - + - - + + + -
21 all (refined) 210 0.60 + - - + + + + - + + +

a Descriptors in common share a + or - in the same column, which also indicates the sign of the fitted coefficient.

Table 13. Absolute and Relativea Errors from Cross-Validated Anti-HIV Activity Predictions Made Using Eq 21

core name

no. in
training

set
no.

predicted

predicted
absolute error

(kcal/mol)

predicted
relative error

(kcal/mol)
predicted

q2
range of
∆Gexptl

1 HEPT 193 18 1.42 1.24 0.66 6.38
8 TIBO 191 22 0.89 0.87 0.48 5.74
test set DABO 210 27 0.67 0.67 0.51 4.63

a The relative errors are obtained by adding the difference of the mean between the predicted and the experimental values to the
predictions for the current core.

Figure 14. Predicted binding affinities (∆Gcalcd) computed
using eq 21 vs experimental activities (∆Gexptl) for multiple
NNRTIs (cores 1-8, Tables 1-8) with HIVRT.

Figure 15. Predicted binding affinities (∆Gcalcd) computed
using eq 21 vs experimental activities (∆Gexptl) for the DABO
analogues (9, Table 9) with HIVRT shown together with
predictions for the training set (×).
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a realistic application of the ELR method given that
outlier compounds would not be known a priori.

Finally, the master regression model (eq 21) was used
to predict the inhibitory activities for a test set of 27
DABO analogues (Table 9). This set was not considered
in the development of the regression model. For 19 out
of 27 compounds used in the test set, both cell-based
and enzyme-based anti-HIV activities were reported.45,46

Because a cell- vs enzyme-based activities plot yields a
correlation coefficient of r2 ) 0.95, activities determined
by the more common cell-based assay were used to
derive the approximate experimental binding free ener-
gies via eq 4. The plot of predicted vs experimental
activities for the DABO compounds is shown in Figure
15 with a q2 of 0.51 and an average unsigned error of
only 0.67 kcal/mol. Residual values for most of the
compounds are close to the uncertainties in the experi-
mental measurements (ca. 0.5 kcal/mol), with the excep-
tion of analogues D24 and D25. The application of the
master regression to successfully predict the activities
of a new set of NNRTIs not included in the training set
is encouraging.

QikProp Regressions. EXXLJ consistently emerges
as a significant descriptor of binding because it reflects
the complementarity of the binding site of the protein
and the structure of the ligands. To test whether such
information is crucial in deriving scoring functions,
additional calculations on the free ligands were per-
formed using the QikProp (QP) program.43 QikProp
utilizes only the unbound ligand to calculate 35 molec-
ular descriptors and properties, which were used here
as regression descriptors. QikProp was executed on the
ligand’s structure from the last accepted move in the
unbound MC simulations. The QP results lack struc-
tural information about the binding site of the protein
and do not include statistical sampling. Following the
same protocol described earlier in the Results and
Discussion section, correlations to each individual set
of anti-HIV activities were pursued first, utilizing the
same constraint that up to 10% outliers would be
eliminated. Individual regressions (eqs 22-30) did not
contain descriptors in common for most of the data sets.
However, reasonable correlations for each core were
obtained using only seven QP descriptors with coef-
ficients sharing the same sign among different data sets
(with the exception of core 5b, Table 14) with an average
r2 value of 0.62, an rms error of 0.76 kcal/mol, and an
average unsigned error of 0.59 kcal/mol. The corre-

sponding results for eqs 5-13 were 0.70, 0.67, and 0.50
kcal/mol, respectively.

QP descriptors used in individual regressions include
qp_FISA, qp_PISA, and qp_WPSA, representing the
hydrophilic, aromatic, and weakly polar portions of the
SASA, respectively; qp_volume, molecular volume;
qp_#rotor, number of rotatable bonds for the ligand;
qp_accptHB, number of hydrogen bonds accepted by the
ligand; and qp_∆Ghyd, estimated free energy of hydra-
tion. The logical build-up approach proven successful
in deriving the master NNRTI regression (eq 21) was
initially applied to the QP analysis but did not yield
satisfactory results, primarily because only a few cores
contain descriptors in common across the nine diverse
data sets (Table 14). Therefore, a master QP regression
(eq 31) was derived by including all of the significant
descriptors from individual equations and the offsets to

Table 14. Significant Descriptors from Individual QP Fits of Each NNRTI Core (Eqs 22-30) and from the Final QP Model (Eq 31)a

core name r2 qp_FISA qp_volume qp_#rotor qp_PISA qp_accptHB qp_WPSA qp_∆Ghyd U B

1 HEPT 0.81 + -
2 carboxanilide 0.49 + + +
3 nevirapine 0.66 + +
4 ASBN 0.76 + +
5a Sustiva 0.52 - -
5b Sustiva 0.72 + -
6 quinoxaline 0.52 +
7 PETT 0.63 - -
8 TIBO 0.47 - +
all (refined) 0.42 + - + - + +

a Descriptors in common share a + or - in the same column, which also indicates the sign of the fitted coefficient.

∆Gcalcd (core 1) ) 0.033(qp_FISA) -
0.014(qp_volume) + 0.65 (22)

∆Gcalcd (core 2) ) 0.037(qp_FISA) +
0.0045(qp_PISA) + 0.51(qp_rotor) - 15 (23)

∆Gcalcd (core 3) ) 0.0079(qp_PISA) +
0.94(qp_accptHB) - 16 (24)

∆Gcalcd (core 4) ) 0.028(qp_PISA) +
0.55(qp_accptHB) - 19 (25)

∆Gcalcd (core 5a) ) -0.01(qp_WPSA) -
0.0083(qp_volume) - 0.49 (26)

∆Gcalcd (core 5b) ) 0.01(qp_WPSA) -
0.16(qp_∆Ghyd) - 14 (27)

∆Gcalcd (core 6) ) 0.026(qp_FISA) - 13 (28)

∆Gcalcd (core 7) ) -0.022(qp_WPSA) -
0.0036(qp_volume) - 3.2 (29)

∆Gcalcd (core 8) ) - 0.028(qp_volume) +
1.8(qp_#rotor) + 13 (30)
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take into account the experimental variations (Table
10).

An r2 of 0.42, an rms error of 0.98 kcal/mol, and an
average unsigned error of 0.79 kcal/mol were obtained
using only four QP descriptors and two offsets. The
value of the intercept for this fit is significantly larger
than the corresponding value in the master regression
(eq 21), which can be attributed to the absence of
parameters that include important protein-ligand in-
teractions. Generally, large values of an intercept might
indicate factors not accounted for in a regression model.
Nevertheless, the magnitudes and signs of the descrip-
tors are reasonable and physically intuitive. Ligands
with large hydrophilic and aromatic SASA pay a higher
desolvation penalty upon binding, and contributions
from those terms to the overall ∆Gbind should be
unfavorable. Weakly polar SASA emerges as a signifi-
cant descriptor in the fit and, as before, might reflect
the relatively hydrophobic nature of the halogens. The
molecular volume descriptor indicates that the binding
process is favored by many contacts between the ligand
and the protein. However, in the absence of information
about the nature of the binding site, such an interpreta-
tion is not straightforward. Interestingly, 46% of the
outliers in both master regressions (eqs 21 and 31) are
the same, and the two offsets in eq 31, Ucorr and Bcorr,
are close to the expected values of 1 kcal/mol for cores
2 and 8 (Table 10). The correlation between experimen-
tal and predicted values for 210 NNRTIs using only QP
descriptors is presented in Figure 16.

Cross-validation of the model was pursued following
the same LOO protocol established previously. As
expected, these LOO predictions yielded significantly
degraded q2 values and higher absolute and relative
errors (Table 15). The q2 obtained for the 210 NNRTIs
using eq 31 is 0.37 with an rms of 1.00 kcal/mol and an
average unsigned error of 0.82 kcal/mol. The values for
the cross-validated correlation coefficients obtained by
the extended LOO protocol for the HEPT and TIBO
series are 0.61 and 0.30, respectively, with relatively
high absolute and relative errors that differ negligibly
(Table 15). Predictions were then made for the DABO
series and yielded a q2 value of only 0.15. These findings
unequivocally support the value of the information on
the protein-ligand complexes that is obtained in the
ELR approach. In the absence of such information, the
predictive ability of regression models is seriously
compromised.

Conclusion
Individual regression equations (eqs 5-13) have been

developed for the estimation of binding affinities for
eight series of NNRTIs by fitting results from MC
simulations for each compound in the bound and
unbound states to experimental anti-HIV activities.
Good correlations with the experimental activities (Table
11, Figures 3-11) were obtained in all cases with an
average r2 value of 0.70, an rms error of 0.67 kcal/mol,
and an average unsigned error of 0.50 kcal/mol, using
only 10 unique descriptors (Table 11). In each case, no
more than 10% of the compounds were removed as
outliers (Tables 1-8). Thus, good fits can be obtained
for individual series, as previously found.8,10,28,30 The
most common descriptors that were significant for the
individual regressions (Table 11) are the EXXLJ and
∆HBtot terms. These physically sensible parameters
show that a good geometrical match between the inhibi-
tor and the protein is important and that loss of
hydrogen bonds with the inhibitor upon binding is
unfavorable. Other quantities that were found to be
important on a case-by-case basis are also physically
reasonable and include the number of water bridges
between inhibitor and protein (water-bridges), the num-
ber of rotatable bonds in the inhibitor (qp_#rotor),
changes in SASA components (∆FOSA, ∆WPSA, and
∆PISA), changes in dipole moment (∆dipole), an esti-
mate of the free energy of hydration of the inhibitor
(qp_∆Ghyd), and the number of H-bonds between the
inhibitor and an aromatic ring in the protein (DtoProPi).

The regression equations developed for each data set
were then combined (Table 12) by systematic incorpora-
tion of the important descriptors from each fit and by
inclusion of an offset factor, if necessary, to account for

Table 15. Absolute and Relativea Errors from Cross-Validated Anti-HIV QP Activity Predictions Made Using Eq 31

core name

no. in
training

set
no.

predicted

predicted
absolute error

(kcal/mol)

predicted
relative error

(kcal/mol)
predicted

q2
range of
∆Gexptl

1 HEPT 192 18 1.48 1.46 0.61 6.38
8 TIBO 193 22 1.09 1.05 0.30 5.74
test set DABO 210 27 1.00 0.95 0.15 4.63

a The relative errors are obtained by adding the difference of the mean between the predicted and the experimental values to the
predictions for the current core.

∆Gcalcd (all cores) ) 0.0071(qp_FISA) +
0.0027(qp_PISA) - 0.0057(qp_WPSA) -

0.0059(qp_volume) + 1.2(Ucorr) + 0.54(Bcorr) - 4.9
(31)

Figure 16. Predicted binding affinities (∆Gcalcd) computed
using eq 31 vs experimental activities (∆Gexptl) for 210 NNRTIs
(cores 1-8, Tables 1-8) with HIVRT using QikProp descrip-
tors.
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the uncertainties in merging the experimental data from
different literature sources (Table 10). The last combi-
nation regression (eq 20) was refined in an attempt to
generate a more robust equation that could be used to
predict the activity of any NNRTI. Descriptors that were
no longer significant (∆PISA and qp_∆Ghyd) were re-
moved, one additional descriptor (∆eintra) was added,
and the outliers were redetermined. The resultant
master regression model (eq 21) yielded a reasonable
correlation (r2 ) 0.60, Figure 14) with the experimental
activities for 210 NNRTIs using nine physically under-
standable descriptors and two offsets.

The ability of the refined model to predict anti-HIV
activities for NNRTI series not included in the training
set was investigated using a LOO cross-validation
procedure. A reasonable cross-validated correlation coef-
ficient (q2 ) 0.55) was obtained when each of the 210
NNRTIs was excluded from the training set, the master
regression was refit, and the predictions were made for
the compound left out. An extended LOO procedure was
investigated in which an entire data set was excluded
from the training set, the master regression was refit,
and the predictions were made for the data set left out.
Encouraging results were obtained for the HEPT (q2 )
0.66) and TIBO (q2 ) 0.48) data sets, which represent
the series with the largest activity ranges. Problematic
issues for the analyses of all of the series include the
fact that the experimental anti-HIV activities were
obtained from multiple sources, the activity ranges for
many data sets are small, and a few outliers in the data
can remove the statistical significance of an important
descriptor. These issues are expected to remain prob-
lematic in the absence of a large, accurate data set from
a single experimental source. Encouragingly, the re-
gression model can successfully predict anti-HIV activi-
ties for compounds not considered in the development
of the master equation, as shown in Figure 15 for 27
DABO analogues. The reasonable q2 of 0.51 and a low
unsigned error of only 0.67 kcal/mol indicate the poten-
tial for application of the ELR method in library design
to discriminate between active (potential leads) and less
active/inactive compounds. The importance of the EXXLJ

and hydrogen-bonding terms was enforced through
additional regression analysis using only ligand-based
descriptors from QikProp. This approach revealed only
moderate correlations (r2 ) 0.42, Figure 16) with the
experimentally determined anti-HIV activities and poor
predictive ability (Table 15) in the absence of structural
information about the protein binding site. The lack of
common descriptors (Table 14) among the nine data sets
introduced additional difficulties in the development of
the master regression (eq 31).

The present study has further explored the potential
for computational methods to participate in inhibitor
design with specific application to anti-HIV compounds.
It has been demonstrated that results from computer
simulations for NNRTIs and their complexes with
HIVRT can yield physically reasonable regression-based
models, which can be used to make useful predictions
of binding affinities and activities. Extension of a
current series is the most reliable, while jumping to a
new series is also successful with minor degradation in
the predictions.
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